Typhoid Fever: *Salmonella enterica* Serovar Typhi.

- Endemic in Indian Subcontinent
- Diagnosis: Often jeopardized.
- Treatment: Become a challenge due to drug resistance.
- Prevention: Should be planned properly.
 - Sanitation
 - Vaccine
Laboratory Diagnosis of Typhoid fever

- Blood culture
 - Gold standard
 - Limitations: only 50-60% of the cases are positive in the first week of disease.
- Serological: Widal test.
- Stool and/or Urine culture
 - Both of them are rarely positive and stool culture needs special procedure.
Serological tests

- Widal → widely used test in the endemic region.
 Cut off point →
 - Varies from place to place and time
 - Significance for diagnosis and prognosis

- Bangladesh Perspective →
 - TO ≥1:160 and/or TH ≥1:320
 - Clinical correlations →
 - Non-specific reactions, previous clinical/subclinical infections.
 - Common questions ………

BLOOD CULTURE AND RECENT ADVANCES.

♣ Conventional
 • Time consuming
♣ Advance technologies: FAN, Vitek, Bactech etc.
 • Expensive and Needs Automation.
♣ Lysis-direct plating/centrifugation method.
Schematic diagram of LDP/LC method.

- The device is made indigenously.
- Method is simple.
- Can be adapted in any lab with minimum facilities.
Growth of S. typhi after 18 hours of incubations.
Blood culture during antibiotic therapy?

- Introduction of any Newer method that usually accompanied with loud fanfares and intensive promotions.
- What is the reality?
 - Sensitivity of the organisms
 - Culturable and non-culturable form of bacteria.
 - Pharmacokinetics of antibiotic(s)

Growth from a partially treated case.

Saha et al. 1992 Trans. Royal Society Tropical Medicine and Hygiene.
Turnaround time for Culture Positive Cases (N=391).

- TAT – Key to create impact on treatment.
- TAT\(^{90} \) was 30 h
- TAT\(^{100} \) was \(\leq 67 \) h
- Antibiogram of randomly selected strains were tested by conventional NCCLS method.
 - The result was identical (±1mm).

Impact of Report on Therapy.

<table>
<thead>
<tr>
<th>Empirical Therapy Started</th>
<th>Change Needed from 1st line</th>
<th>Change Needed from 2nd line</th>
<th>Appropriate Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>81% (87/108)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54% (47/87) with 1st line of antibiotic</td>
<td>46% (40/87) with 2nd line of antibiotic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall impact is only on 27% \([29(21+8)/108]\) of cases. Cost effectiveness was never a consideration.
Treatment of typhoid fever

1st line of Antibiotic
- Amoxycillin
- Chloramphenicol
- Cotrimoxazole

Recent Problem
- Slow epidemic of multi-drug resistant *S. Typhi* in the subcontinent

Panic among the public health people

Confusion between clinicians and microbiologists

2nd line of antibiotic
- Ceftriaxone - Expensive
- Ciprofloxacin – Widely Used

Saha et al. 1995 J Antimicrobiol Chemotherapy.
Impact of using 2nd line of drugs - Resistance of community vs hospital strains, 1994-1997

- Remarkable difference between hospital and community isolates.
- Ideal practice in Bangladesh and
- Hospital Vs community

Saha et al. J Antimicrobial Chemotherapy 1997
Nalidixic Acid Resistance in S. typhi

- Progressive increase in relative resistance to Ciprofloxacin
 - Delay in clinical response
 - Higher dose
 - Treatment failure
 - Recurrence
Trend of drug resistance in last one decade
Prevention

• Improvement of sanitary system and assurance of safe water supply.

• Immunization – designed for school age children
 – Common belief – either not prevalent or benign in early age

• Vaccine type
 – Parenteral
 • LPS – age group dependent
 – Oral
 • Attenuated
Magnitude of S. typhi bacteremia: change in concept of virulence

- Magnitude of Bacteremia is directly proportional to age.
- Disagree with the common belief about
 - Virulence
 - Vaccination.

Saha et al, Pediatric Infectious Disease Journal, 2000
Age group distribution of Typhoid cases 1998-2004: Implication in vaccination policy (N=2074)

New recommendation for vaccination:

- Existing vaccine may not be effective in 98% of cases with conjugate vaccine needed for this group.
- Effective conjugate vaccine required.
- 98% coverage desired.

Saha et al. Pediatric Infectious Diseases Journal, 2000; and unpublished
Conclusions

• Prevalence – Most common cause of febrile illness in the community and hospital
• Treatment – Third generation cephalosporin
• Prevention – Vaccination, Sanitation, Education (?)
 – Vaccination policy – conjugated vaccine at the age of 9 months to 1 year
Thank You All